
To run or execute the stored program, the processor fetches the
instructions from memory sequentially. The fetched instructions are then
decoded and executed by the digital hardware. The address of the current
instruction is kept in a 32-bit register called the program counter (PC).
The PC is separate from the 32 registers shown previously in Table 6.1.

To execute the code in Figure 6.13, the operating system sets the PC to
address 0x00400000. The processor reads the instruction at that memory
address and executes the instruction, 0x8C0A0020. The processor then
increments the PC by 4 to 0x00400004, fetches and executes that instruc-
tion, and repeats.

The architectural state of a microprocessor holds the state of a pro-
gram. For MIPS, the architectural state consists of the register file and
PC. If the operating system saves the architectural state at some point in
the program, it can interrupt the program, do something else, then restore
the state such that the program continues properly, unaware that it was
ever interrupted. The architectural state is also of great importance when
we build a microprocessor in Chapter 7.

6.4 PROGRAMMING
Software languages such as C or Java are called high-level programming
languages because they are written at a more abstract level than assembly
language. Many high-level languages use common software constructs
such as arithmetic and logical operations, if/else statements, for and
while loops, array indexing, and function calls. See Appendix C for more
examples of these constructs in C. In this section, we explore how to trans-
late these high-level constructs into MIPS assembly code.

6 . 4 . 1 Arithmetic/Logical Instructions

TheMIPS architecture defines a variety of arithmetic and logical instructions.
We introduce these instructions briefly here because they are necessary to
implement higher-level constructs.

addi $t0, $s3, –12

Machine CodeAssembly Code

lw $t2, 32($0)

add $s0, $s1, $s2

sub $t0, $t3, $t5

0x8C0A0020

0x02328020

0x2268FFF4

0x016D4022

Address Instructions

0040000C 0 1 6 D 4 0 2 2

2 2 6 8 F F F 4

0 2 3 2 8 0 2 0

8 C 0 A 0 0 2 0

00400008

00400004

00400000

Stored Program

Main Memory

PC

Figure 6.13 Stored program

Ada Lovelace, 1815–1852.
Wrote the first computer
program. It calculated the
Bernoulli numbers using
Charles Babbage’s Analytical
Engine. She was the only
legitimate child of the poet
Lord Byron.

310 CHAPTER SIX Architecture

Logical Instructions
MIPS logical operations include and, or, xor, and nor. These R-type
instructions operate bit-by-bit on two source registers and write the result
to the destination register. Figure 6.14 shows examples of these opera-
tions on the two source values 0xFFFF0000 and 0x46A1F0B7. The figure
shows the values stored in the destination register, rd, after the instruc-
tion executes.

The and instruction is useful formasking bits (i.e., forcing unwanted bits
to 0). For example, in Figure 6.14, 0xFFFF0000 AND 0x46A1F0B7 =
0x46A10000. The and instruction masks off the bottom two bytes and
places the unmasked top two bytes of $s2, 0x46A1, in $s3. Any subset of
register bits can be masked.

The or instruction is useful for combining bits from two registers. For
example, 0x347A0000 OR 0x000072FC = 0x347A72FC, a combination
of the two values.

MIPS does not provide a NOT instruction, but A NOR $0 = NOT A,
so the NOR instruction can substitute.

Logical operations can also operate on immediates. These I-type
instructions are andi, ori, and xori. nori is not provided, because the
same functionality can be easily implemented using the other instructions,
as will be explored in Exercise 6.16. Figure 6.15 shows examples of the
andi, ori, and xori instructions. The figure gives the values of the source

1111 1111 1111 1111 0000 0000 0000 0000$s1

0100 0110 1010 0001 1111 0000 1011 0111$s2

0100 0110 1010 0001 0000 0000 0000 0000$s3

1111 1111 1111 1111 1111 0000 1011 0111$s4

1011 1001 0101 1110 1111 0000 1011 0111$s5

0000 0000 0000 0000 0000 1111 0100 1000$s6

Source Registers

ResultAssembly Code

and $s3, $s1, $s2

or $s4, $s1, $s2

xor $s5, $s1, $s2

nor $s6, $s1, $s2

Figure 6.14 Logical operations

0000 0000 0000 0000 0000 0000 1111 1111$s1

Assembly Code

0000 0000 0000 0000 1111 1010 0011 0100imm

0000 0000 0000 0000 0000 0000 0011 0100$s2

0000 0000 0000 0000 1111 1010 1111 1111$s3

0000 0000 0000 0000 1111 1010 1100 1011$s4

andi $s2, $s1, 0xFA34

Source Values

Result

ori $s3, $s1, 0xFA34

xori $s4, $s1, 0xFA34

zero-extended Figure 6.15 Logical operations
with immediates

6.4 Programming 311

register and immediate and the value of the destination register rt after
the instruction executes. Because these instructions operate on a 32-bit
value from a register and a 16-bit immediate, they first zero-extend the
immediate to 32 bits.

Shift Instructions
Shift instructions shift the value in a register left or right by up to 31 bits.
Shift operations multiply or divide by powers of two. MIPS shift opera-
tions are sll (shift left logical), srl (shift right logical), and sra (shift
right arithmetic).

As discussed in Section 5.2.5, left shifts always fill the least significant
bits with 0’s. However, right shifts can be either logical (0’s shift into themost
significant bits) or arithmetic (the sign bit shifts into the most significant bits).
Figure 6.16 shows themachine code for the R-type instructions sll, srl, and
sra. rt (i.e., $s1) holds the 32-bit value to be shifted, and shamt gives the
amount by which to shift (4). The shifted result is placed in rd.

Figure 6.17 shows the register values for the shift instructions sll,
srl, and sra. Shifting a value left by N is equivalent to multiplying it by
2N. Likewise, arithmetically shifting a value right by N is equivalent to
dividing it by 2N, as discussed in Section 5.2.5.

MIPS also has variable-shift instructions: sllv (shift left logical vari-
able), srlv (shift right logical variable), and srav (shift right arithmetic
variable). Figure 6.18 shows the machine code for these instructions.
Variable-shift assembly instructions are of the form sllv rd, rt, rs.
The order of rt and rs is reversed from most R-type instructions. rt ($s1)
holds the value to be shifted, and the five least significant bits of rs ($s2) give
the amount to shift. The shifted result is placed in rd, as before. The shamt

sll $t0, $s1, 4

srl $s2, $s1, 4

sra $s3, $s1, 4

000000 00000 10001 01000 00100 000000

op rs rt rd shamt funct op rs rt rd shamt funct

Machine Code Assembly Code

 0 0 17 8 4 0

Field Values

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

 0 0 17 18 4 2

 0 0 17 19 4 3

000000 00000 10001 10010 00100 000010

000000 00000 10001 10011 00100 000011

(0x00114100)

(0x00119102)

(0x00119903)

Figure 6.16 Shift instruction machine code

1111 0011 0000 0000 0000 0010 1010 1000$s1

Assembly Code

00100shamt

0011 0000 0000 0000 0010 1010 1000 0000$t0

0000 1111 0011 0000 0000 0000 0010 1010$s2

$s3

sll $t0, $s1, 4

Source Values

Result

srl $s2, $s1, 4

sra $s3, $s1, 4 1111 1111 0011 0000 0000 0000 0010 1010

Figure 6.17 Shift operations

312 CHAPTER SIX Architecture

field is ignored and should be all 0’s. Figure 6.19 shows register values for
each type of variable-shift instruction.

Generating Constants
The addi instruction is helpful for assigning 16-bit constants, as shown in
Code Example 6.10.

To assign 32-bit constants, use a load upper immediate instruction
(lui) followed by an or immediate (ori) instruction as shown in Code
Example 6.11. lui loads a 16-bit immediate into the upper half of a
register and sets the lower half to 0. As mentioned earlier, ori merges a
16-bit immediate into the lower half.

Code Example 6.11 32-BIT CONSTANT

High-Level Code

int a = 0x6d5e4f3c;

MIPS Assembly Code

$s0 = a
lui $s0, 0x6d5e # a = 0x6d5e0000
ori $s0, $s0, 0x4f3c # a = 0x6d5e4f3c

Code Example 6.10 16-BIT CONSTANT

High-Level Code

int a = 0x4f3c;

MIPS Assembly Code

$s0 = a
addi $s0, $0, 0x4f3c # a = 0x4f3c

The int data type in C refers
to a word of data representing
a two’s complement integer.
MIPS uses 32-bit words, so an
int represents a number in the
range [−231, 231− 1].

$s1

0000 0000$s3

0000 0000$s4

1111 1111$s5

Assembly Code

sllv $s3, $s1, $s2

srlv $s4, $s1, $s2

srav $s5, $s1, $s2

Source Values

Result

$s2

1111 0011 0000 0100 0000 0010 1010 1000

0000 0000 0000 0000 0000 0000 0000 1000

0000 0100 0000 00101010 1000

1111 0011 0000 0100 0000 0010

1111 0011 0000 0100 0000 0010

Figure 6.19 Variable-shift
operations

sllv $s3, $s1, $s2

srlv $s4, $s1, $s2

srav $s5, $s1, $s2

op rs rt rd shamt funct

Machine CodeAssembly Code Field Values
op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 6 bits 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits 5 bits

(0x02519804)

(0x0251A006)

(0x0251A807)

401917180

602017180

702117180

000000 10010 10001 10011 00000 000100

000000 10010 10001 10100 00000 000110

000000 10010 10001 10101 00000 000111

Figure 6.18 Variable-shift instruction machine code

6.4 Programming 313

Multiplication and Division Instructions*
Multiplication and division are somewhat different from other arithmetic
operations. Multiplying two 32-bit numbers produces a 64-bit product.
Dividing two 32-bit numbers produces a 32-bit quotient and a 32-bit
remainder.

The MIPS architecture has two special-purpose registers, hi and lo,
which are used to hold the results of multiplication and division. mult
$s0, $s1 multiplies the values in $s0 and $s1. The 32 most significant
bits of the product are placed in hi and the 32 least significant bits are
placed in lo. Similarly, div $s0, $s1 computes $s0/$s1. The quotient
is placed in lo and the remainder is placed in hi.

MIPS provides another multiply instruction that produces a 32-bit
result in a general purpose register. mul $s1, $s2, $s3 multiplies the
values in $s2 and $s3 and places the 32-bit result in $s1.

6 . 4 . 2 Branching

An advantage of a computer over a calculator is its ability to make deci-
sions. A computer performs different tasks depending on the input. For
example, if/else statements, switch/case statements, while loops,
and for loops all conditionally execute code depending on some test.

To sequentially execute instructions, the program counter increments
by 4 after each instruction. Branch instructions modify the program
counter to skip over sections of code or to repeat previous code.Conditional
branch instructions perform a test and branch only if the test is TRUE.
Unconditional branch instructions, called jumps, always branch.

Conditional Branches
The MIPS instruction set has two conditional branch instructions: branch
if equal (beq) and branch if not equal (bne). beq branches when the
values in two registers are equal, and bne branches when they are not
equal. Code Example 6.12 illustrates the use of beq. Note that branches
are written as beq rs, rt, imm, where rs is the first source register. This
order is reversed from most I-type instructions.

When the program in Code Example 6.12 reaches the branch if equal
instruction (beq), the value in $s0 is equal to the value in $s1, so the
branch is taken. That is, the next instruction executed is the add instruc-
tion just after the label called target. The two instructions directly after
the branch and before the label are not executed.2

Assembly code uses labels to indicate instruction locations in the pro-
gram. When the assembly code is translated into machine code, these

hi and lo are not among the
usual 32 MIPS registers, so
special instructions are needed
to access them. mfhi $s2
(move from hi) copies the
value in hi to $s2. mflo $s3
(move from lo) copies the
value in lo to $s3. hi and lo
are technically part of the
architectural state; however,
we generally ignore these
registers in this book.

2 In practice, because of pipelining (discussed in Chapter 7), MIPS processors have a branch
delay slot. This means that the instruction immediately after a branch or jump is always
executed. This idiosyncracy is ignored in MIPS assembly code in this chapter.

314 CHAPTER SIX Architecture

labels are translated into instruction addresses (see Section 6.5). MIPS
assembly labels are followed by a colon (:) and cannot use reserved
words, such as instruction mnemonics. Most programmers indent their
instructions but not the labels, to help make labels stand out.

Code Example 6.13 shows an example using the branch if not equal
instruction (bne). In this case, the branch is not taken because $s0 is equal
to $s1, and the code continues to execute directly after the bne instruc-
tion. All instructions in this code snippet are executed.

Jump
A program can unconditionally branch, or jump, using the three types of
jump instructions: jump (j), jump and link (jal), and jump register (jr).
Jump (j) jumps directly to the instruction at the specified label. Jump and link
(jal) is similar to j but is used by functions to save a return address, aswill be
discussed in Section 6.4.6. Jump register (jr) jumps to the address held in a
register. Code Example 6.14 shows the use of the jump instruction (j).

After the j target instruction, the program in Code Example 6.14
unconditionally continues executing the add instruction at the label
target. All of the instructions between the jump and the label are skipped.

j and jal are J-type instructions.
jr is an R-type instruction that
uses only the rs operand.

Code Example 6.13 CONDITIONAL BRANCHING USING bne

MIPS Assembly Code

addi $s0, $0, 4 # $s0 = 0 + 4 = 4

addi $s1, $0, 1 # $s1 = 0 + 1 = 1

s11 $s1, $s1, 2 # $s1 = 1 << 2 = 4

bne $s0, $s1, target # $s0 == $s1, so branch is not taken

addi $s1, $s1, 1 # $s1 = 4 + 1 = 5

sub $s1, $s1, $s0 # $s1 = 5 − 4 = 1

target:

add $s1, $s1, $s0 # $s1 = 1 + 4 = 5

Code Example 6.12 CONDITIONAL BRANCHING USING beq

MIPS Assembly Code

addi $s0, $0, 4 # $s0 = 0 + 4 = 4

addi $s1, $0, 1 # $s1 = 0 + 1 = 1

sll $s1, $s1, 2 # $s1 = 1 << 2 = 4

beq $s0, $s1, target # $s0 == $s1, so branch is taken

addi $s1, $s1, 1 # not executed

sub $s1, $s1, $s0 # not executed

target:

add $s1, $s1, $s0 # $s1 = 4 + 4 = 8

6.4 Programming 315

Code Example 6.15 shows the use of the jump register instruction
(jr). Instruction addresses are given to the left of each instruction.
jr $s0 jumps to the address held in $s0, 0x00002010.

6 . 4 . 3 Conditional Statements

if, if/else, and switch/case statements are conditional statements com-
monly used in high-level languages. They each conditionally execute a block
of code consisting of one or more statements. This section shows how to trans-
late these high-level constructs into MIPS assembly language.

If Statements
An if statement executes a block of code, the if block, only when a con-
dition is met. Code Example 6.16 shows how to translate an if statement
into MIPS assembly code.

Code Example 6.15 UNCONDITIONAL BRANCHING USING jr

MIPS Assembly Code

0x00002000 addi $s0, $0, 0x2010 # $s0 = 0x2010

0x00002004 jr $s0 # jump to 0x00002010

0x00002008 addi $s1, $0, 1 # not executed

0x0000200c sra $s1, $s1, 2 # not executed

0x00002010 lw $s3, 44($s1) # executed after jr instruction

Code Example 6.14 UNCONDITIONAL BRANCHING USING j

MIPS Assembly Code

addi $s0, $0, 4 # $s0 = 4

addi $s1, $0, 1 # $s1 = 1

j target # jump to target

addi $s1, $s1, 1 # not executed

sub $s1, $s1, $s0 # not executed

target:

add $s1, $s1, $s0 # $s1 = 1 + 4 = 5

Code Example 6.16 if STATEMENT

High-Level Code

if (i == j)
f = g + h;

f = f – i;

MIPS Assembly Code

$s0 = f, $s1 = g, $s2 = h, $s3 = i, $s4 = j
bne $s3, $s4, L1 # if i != j, skip if block
add $s0, $s1, $s2 # if block: f = g + h

L1:
sub $s0, $s0, $s3 # f = f − i

316 CHAPTER SIX Architecture

The assembly code for the if statement tests the opposite condition
of the one in the high-level code. In Code Example 6.16, the high-level code
tests for i == j, and the assembly code tests for i != j. The bne instruction
branches (skips the if block) when i != j. Otherwise, i == j, the branch
is not taken, and the if block is executed as desired.

If/Else Statements
if/else statements execute one of two blocks of code depending on a
condition. When the condition in the if statement is met, the if block is
executed. Otherwise, the else block is executed. Code Example 6.17
shows an example if/else statement.

Like if statements, if/else assembly code tests the opposite condition
of the one in the high-level code. For example, in Code Example 6.17, the
high-level code tests for i== j. The assembly code tests for the opposite con-
dition (i != j). If that opposite condition is TRUE, bne skips the if block and
executes the else block. Otherwise, the if block executes and finishes with a
jump instruction (j) to jump past the else block.

Switch/Case Statements*
switch/case statements execute one of several blocks of code depending
on the conditions. If no conditions are met, the default block is executed.
A case statement is equivalent to a series of nested if/else statements.
Code Example 6.18 shows two high-level code snippets with the same
functionality: they calculate the fee for an ATM (automatic teller machine)
withdrawal of $20, $50, or $100, as defined by amount. The MIPS assem-
bly implementation is the same for both high-level code snippets.

6 . 4 . 4 Getting Loopy

Loops repeatedly execute a block of code depending on a condition. for
loops and while loops are common loop constructs used by high-level
languages. This section shows how to translate them into MIPS assembly
language.

Code Example 6.17 if/else STATEMENT

High-Level Code

if (i == j)
f = g + h;

else
f = f − i;

MIPS Assembly Code

$s0 = f, $s1 = g, $s2 = h, $s3 = i, $s4 = j
bne $s3, $s4, else # if i != j, branch to else
add $s0, $s1, $s2 # if block: f = g + h
j L2 # skip past the else block

else:
sub $s0, $s0, $s3 # else block: f = f − i

L2:

6.4 Programming 317

While Loops
while loops repeatedly execute a block of code until a condition is not met.
The while loop in Code Example 6.19 determines the value of x such that
2x = 128. It executes seven times, until pow = 128.

Like if/else statements, the assembly code for while loops tests the
opposite condition of the one given in the high-level code. If that opposite
condition is TRUE, the while loop is finished.

Code Example 6.18 switch/case STATEMENT

High-Level Code

switch (amount) {

case 20: fee = 2; break;

case 50: fee = 3; break;

case 100: fee = 5; break;

default: fee = 0;

}

// equivalent function using if/else statements
if (amount == 20) fee = 2;
else if (amount == 50) fee = 3;
else if (amount == 100) fee = 5;
else fee = 0;

MIPS Assembly Code

$s0 = amount, $s1 = fee

case20:
addi $t0, $0, 20 # $t0 = 20
bne $s0, $t0, case50 # amount == 20? if not,

skip to case50
addi $s1, $0, 2 # if so, fee = 2
j done # and break out of case

case50:
addi $t0, $0, 50 # $t0 = 50
bne $s0, $t0, case100 # amount == 50? if not,

skip to case100
addi $s1, $0, 3 # if so, fee = 3
j done # and break out of case

case100:
addi $t0, $0, 100 # $t0 = 100
bne $s0, $t0, default # amount == 100? if not,

skip to default
addi $s1, $0, 5 # if so, fee = 5
j done # and break out of case

default:
add $s1, $0, $0 # fee = 0

done:

Code Example 6.19 while LOOP

High-Level Code

int pow = 1;
int x = 0;

while (pow != 128)
{

pow = pow * 2;
x = x + 1;

}

MIPS Assembly Code

$s0 = pow, $s1 = x
addi $s0, $0, 1 # pow = 1
addi $s1, $0, 0 # x = 0

addi $t0, $0, 128 # t0 = 128 for comparison
while:
beq $s0, $t0, done # if pow == 128, exit while loop
sll $s0, $s0, 1 # pow = pow * 2
addi $s1, $s1, 1 # x = x + 1
j while

done:

318 CHAPTER SIX Architecture

In Code Example 6.19, the while loop compares pow to 128 and
exits the loop if it is equal. Otherwise it doubles pow (using a left shift),
increments x, and jumps back to the start of the while loop.

For Loops
for loops, like while loops, repeatedly execute a block of code until a
condition is not met. However, for loops add support for a loop variable,
which typically keeps track of the number of loop executions. A general
format of the for loop is

for (initialization; condition; loop operation)
statement

The initialization code executes before the for loop begins. The
condition is tested at the beginning of each loop. If the condition is
not met, the loop exits. The loop operation executes at the end of
each loop.

Code Example 6.20 adds the numbers from 0 to 9. The loop variable,
in this case i, is initialized to 0 and is incremented at the end of each loop
iteration. At the beginning of each iteration, the for loop executes only
when i is not equal to 10. Otherwise, the loop is finished. In this case,
the for loop executes 10 times. for loops can be implemented using a
while loop, but the for loop is often convenient.

Magnitude Comparison
So far, the examples have used beq and bne to perform equality or inequal-
ity comparisons and branches. MIPS provides the set less than instruction,
slt, for magnitude comparison. slt sets rd to 1 when rs < rt. Otherwise,
rd is 0.

Code Example 6.20 for LOOP

High-Level Code

int sum = 0;

for (i = 0; i != 10; i = i + 1) {
sum = sum + i ;

}

// equivalent to the following while loop
int sum = 0;
int i = 0;
while (i != 10) {

sum = sum + i;
i = i + 1;

}

MIPS Assembly Code

$s0 = i, $s1 = sum
add $s1, $0, $0 # sum = 0
addi $s0, $0, 0 # i = 0
addi $t0, $0, 10 # $t0 = 10

for:
beq $s0, $t0, done # if i == 10, branch to done
add $s1, $s1, $s0 # sum = sum + i
addi $s0, $s0, 1 # increment i
j for

done:

do/while loops are similar to
while loops except they
execute the loop body once
before checking the condition.
They are of the form:

do
statement

while (condition);

6.4 Programming 319

Example 6.6 LOOPS USING slt

The following high-level code adds the powers of 2 from 1 to 100. Translate it
into assembly language.

// high-level code

int sum = 0;
for (i = 1; i < 101; i = i * 2)

sum = sum + i;

Solution: The assembly language code uses the set less than (slt) instruction to
perform the less than comparison in the for loop.

MIPS assembly code

$s0 = i, $s1 = sum
addi $s1, $0, 0 # sum = 0
addi $s0, $0, 1 # i = 1
addi $t0, $0, 101 # $t0 = 101

loop:
slt $t1, $s0, $t0 # if (i < 101) $t1 = 1, else $t1 = 0
beq $t1, $0, done # if $t1 == 0 (i >= 101), branch to done
add $s1, $s1, $s0 # sum = sum + i
sll $s0, $s0, 1 # i = i * 2
j loop

done:

Exercise 6.17 explores how to use slt for othermagnitude comparisons
including greater than, greater than or equal, and less than or equal.

6 . 4 . 5 Arrays

Arrays are useful for accessing large amounts of similar data. An array is
organized as sequential data addresses in memory. Each array element is
identified by a number called its index. The number of elements in the
array is called the size of the array. This section shows how to access
array elements in memory.

Array Indexing
Figure 6.20 shows an array of five integers stored in memory. The index
ranges from 0 to 4. In this case, the array is stored in a processor’s main
memory starting at base address 0x10007000. The base address gives the
address of the first array element, array[0].

Code Example 6.21 multiplies the first two elements in array by 8
and stores them back into the array.

The first step in accessing an array element is to load the base address
of the array into a register. Code Example 6.21 loads the base address

320 CHAPTER SIX Architecture

into $s0. Recall that the load upper immediate (lui) and or immediate
(ori) instructions can be used to load a 32-bit constant into a register.

Code Example 6.21 also illustrates why lw takes a base address and an
offset. The base address points to the start of the array. The offset can be
used to access subsequent elements of the array. For example, array[1]
is stored at memory address 0x10007004 (one word or four bytes after
array[0]), so it is accessed at an offset of 4 past the base address.

You might have noticed that the code for manipulating each of the
two array elements in Code Example 6.21 is essentially the same except
for the index. Duplicating the code is not a problem when accessing
two array elements, but it would become terribly inefficient for accessing
all of the elements in a large array. Code Example 6.22 uses a for loop to
multiply by 8 all of the elements of a 1000-element array stored at a base
address of 0x23B8F000.

Figure 6.21 shows the 1000-element array inmemory. The index into the
array is now a variable (i) rather than a constant, so we cannot take advan-
tage of the immediate offset in lw. Instead, we compute the address of the ith
element and store it in $t0. Remember that each array element is a word but
that memory is byte addressed, so the offset from the base address is i * 4.

Code Example 6.21 ACCESSING ARRAYS

High-Level Code

int array[5];

array[0] = array[0] * 8;

array[1] = array[1] * 8;

MIPS Assembly Code

$s0 = base address of array
lui $s0, 0x1000 # $s0 = 0x10000000
ori $s0, $s0, 0x7000 # $s0 = 0x10007000

lw $t1, 0($s0) # $t1 = array[0]
sll $t1, $t1, 3 # $t1 = $t1 << 3 = $t1 * 8
sw $t1, 0($s0) # array[0] = $t1

Iw $t1, 4($s0) # $t1 = array[1]
sll $t1, $t1, 3 # $t1 = $t1 << 3 = $t1 * 8
sw $t1, 4($s0) # array[1] = $t1

array[4]
array[3]
array[2]
array[1]
array[0]0x10007000

0x10007004
0x10007008
0x1000700C
0x10007010

Main Memory

Address Data

Figure 6.20 Five-entry array with
base address of 0x10007000

6.4 Programming 321

Shifting left by 2 is a convenient way to multiply by 4 in MIPS assembly
language. This example readily extends to an array of any size.

Bytes and Characters
Numbers in the range [–128, 127] can be stored in a single byte rather than
an entire word. Because there are much fewer than 256 characters on an
English language keyboard, English characters are often represented by
bytes. The C language uses the type char to represent a byte or character.

Early computers lacked a standard mapping between bytes and
English characters, so exchanging text between computers was difficult.
In 1963, the American Standards Association published the American
Standard Code for Information Interchange (ASCII), which assigns each
text character a unique byte value. Table 6.2 shows these character
encodings for printable characters. The ASCII values are given in hexade-
cimal. Lower-case and upper-case letters differ by 0x20 (32).

Other programming
languages, such as Java, use
different character encodings,
most notably Unicode.
Unicode uses 16 bits to
represent each character, so
it supports accents, umlauts,
and Asian languages. For
more information, see
www.unicode.org.

23B8FF9C array[999]

23B8FF98

23B8F004

23B8F000

array[998]

array[1]

array[0]

Main Memory

Address Data

Figure 6.21 Memory holding
array[1000] starting at base
address 0x23B8F000

Code Example 6.22 ACCESSING ARRAYS USING A for LOOP

High-Level Code

int i;
int array[1000];

for (i = 0; i < 1000; i = i + 1)

array[i] = array[i] * 8;

MIPS Assembly Code

$s0 = array base address, $s1 = i
initialization code
lui $s0, 0x23B8 # $s0 = 0x23B80000
ori $s0, $s0, 0xF000 # $s0 = 0x23B8F000
addi $s1, $0, 0 # i = 0
addi $t2, $0, 1000 # $t2 = 1000

loop:
slt $t0, $s1, $t2 # i < 1000?
beq $t0, $0, done # if not, then done
sll $t0, $s1, 2 # $t0 = i*4 (byte offset)
add $t0, $t0, $s0 # address of array[i]
lw $t1, 0($t0) # $t1 = array[i]
sll $t1, $t1, 3 # $t1 = array[i] * 8
sw $t1, 0($t0) # array[i] = array[i] * 8
addi $s1, $s1, 1 # i = i + 1
j loop # repeat

done:

322 CHAPTER SIX Architecture

MIPS provides load byte and store byte instructions to manipulate
bytes or characters of data: load byte unsigned (lbu), load byte (lb),
and store byte (sb). All three are illustrated in Figure 6.22.

Table 6.2 ASCII encodings

Char # Char # Char # Char # Char # Char

20 space 30 0 40 @ 50 P 60 ` 70 p

21 ! 31 1 41 A 51 Q 61 a 71 q

22 " 32 2 42 B 52 R 62 b 72 r

23 # 33 3 43 C 53 S 63 c 73 s

24 $ 34 4 44 D 54 T 64 d 74 t

25 % 35 5 45 E 55 U 65 e 75 u

26 & 36 6 46 F 56 V 66 f 76 v

27 ' 37 7 47 G 57 W 67 g 77 w

28 (38 8 48 H 58 X 68 h 78 x

29) 39 9 49 I 59 Y 69 i 79 y

2A * 3A : 4A J 5A Z 6A j 7A z

2B + 3B ; 4B K 5B [6B k 7B {

2C , 3C < 4C L 5C \ 6C l 7C |

2D − 3D = 4D M 5D] 6D m 7D }

2E . 3E > 4E N 5E ^ 6E n 7E ~

2F / 3F ? 4F O 5F _ 6F o

Byte Address

03428CF7Data

3 2 1 0

$s1 00 8C lbu $s1, 2($0)

Little-Endian Memory

0000

Registers

$s2 FF 8C lb $s2, 2($0)FFFF

$s3 9B sb $s3, 3($0)XX XX XX

Figure 6.22 Instructions for
loading and storing bytes

ASCII codes developed from
earlier forms of character
encoding. Beginning in 1838,
telegraph machines used
Morse code, a series of dots (.)
and dashes (–), to represent
characters. For example, the
letters A, B, C, and D were
represented as . – , – . . . , – . – . ,
and – . . , respectively. The
number of dots and dashes
varied with each letter. For
efficiency, common letters used
shorter codes.

In 1874, Jean-Maurice-
Emile Baudot invented a 5-bit
code called the Baudot code.
For example, A, B, C, and D
were represented as 00011,
11001, 01110, and 01001.
However, the 32 possible
encodings of this 5-bit code
were not sufficient for all the
English characters. But 8-bit
encoding was. Thus, as
electronic communication
became prevalent, 8-bit ASCII
encoding emerged as the
standard.

6.4 Programming 323

Word
Address

1522FFF4

1522FFF0

Data

48656C6C

6F2100

Little-Endian Memory

Byte 3 Byte 0

Figure 6.23 The string “Hello!”
stored in memory

Load byte unsigned (lbu) zero-extends the byte, and load byte (lb) sign-
extends the byte to fill the entire 32-bit register. Store byte (sb) stores the
least significant byte of the 32-bit register into the specified byte address in
memory. In Figure 6.22, lbu loads the byte at memory address 2 into the
least significant byte of $s1 and fills the remaining register bits with 0. lb
loads the sign-extended byte at memory address 2 into $s2. sb stores the
least significant byte of $s3 into memory byte 3; it replaces 0xF7 with
0x9B. The more significant bytes of $s3 are ignored.

Example 6.7 USING lb AND sb TO ACCESS A CHARACTER ARRAY

The following high-level code converts a ten-entry array of characters from lower-
case to upper-case by subtracting 32 from each array entry. Translate it into MIPS
assembly language. Remember that the address difference between array elements
is now 1 byte, not 4 bytes. Assume that $s0 already holds the base address of
chararray.

// high-level code

char chararray[10];
int i;
for (i = 0; i != 10; i = i + 1)

chararray[i] = chararray[i] – 32;

Solution:

MIPS assembly code
$s0 = base address of chararray, $s1 = i

addi $s1, $0, 0 # i = 0
addi $t0, $0, 10 # $t0 = 10

loop: beq $t0, $s1, done # if i = = 10, exit loop
add $t1, $s1, $s0 # $t1 = address of chararray[i]
lb $t2, 0($t1) # $t2 = array[i]
addi $t2, $t2, –32 # convert to upper case: $t2 = $t2 − 32
sb $t2, 0($t1) # store new value in array:

chararray[i] = $t2
addi $s1, $s1, 1 # i = i+1
j loop # repeat

done:

A series of characters is called a string. Strings have a variable length,
so programming languages must provide a way to determine the length
or end of the string. In C, the null character (0x00) signifies the end of a
string. For example, Figure 6.23 shows the string “Hello!” (0x48 65 6C
6C 6F 21 00) stored in memory. The string is seven bytes long and extends
from address 0x1522FFF0 to 0x1522FFF6. The first character of the string
(H = 0x48) is stored at the lowest byte address (0x1522FFF0).

324 CHAPTER SIX Architecture

6 . 4 . 6 Function Calls

High-level languages often use functions (also called procedures) to reuse
frequently accessed code and to make a program more modular and
readable. Functions have inputs, called arguments, and an output, called
the return value. Functions should calculate the return value and cause
no other unintended side effects.

When one function calls another, the calling function, the caller, and the
called function, the callee, must agree on where to put the arguments and the
return value. In MIPS, the caller conventionally places up to four arguments
in registers $a0–$a3 before making the function call, and the callee places
the return value in registers $v0–$v1 before finishing. By following this con-
vention, both functions know where to find the arguments and return value,
even if the caller and callee were written by different people.

The callee must not interfere with the function of the caller. Briefly, this
means that the callee must know where to return to after it completes and it
must not trample on any registers or memory needed by the caller. The
caller stores the return address in $ra at the same time it jumps to the callee
using the jump and link instruction (jal). The callee must not overwrite
any architectural state or memory that the caller is depending on. Specifi-
cally, the callee must leave the saved registers, $s0–$s7, $ra, and the stack,
a portion of memory used for temporary variables, unmodified.

This section shows how to call and return from a function. It shows
how functions access input arguments and the return value and how they
use the stack to store temporary variables.

Function Calls and Returns
MIPS uses the jump and link instruction (jal) to call a function and the jump
register instruction (jr) to return from a function. Code Example 6.23 shows
the main function calling the simple function. main is the caller, and simple
is the callee. The simple function is called with no input arguments and gen-
erates no return value; it simply returns to the caller. In Code Example 6.23,
instruction addresses are given to the left of each MIPS instruction in
hexadecimal.

Code Example 6.23 simple FUNCTION CALL

High-Level Code

int main() {
simple();
. . .

}
// void means the function returns no value
void simple() {
return;

}

MIPS Assembly Code

0x00400200 main: jal simple # call function
0x00400204 . . .

0x00401020 simple: jr $ra # return

6.4 Programming 325

Jump and link (jal) and jump register (jr $ra) are the two essential
instructions needed for a function call. jal performs two operations: it
stores the address of the next instruction (the instruction after jal) in
the return address register ($ra), and it jumps to the target instruction.

In Code Example 6.23, the main function calls the simple function
by executing the jump and link (jal) instruction. jal jumps to the simple
label and stores 0x00400204 in $ra. The simple function returns imme-
diately by executing the instruction jr $ra, jumping to the instruction
address held in $ra. The main function then continues executing at this
address (0x00400204).

Input Arguments and Return Values
The simple function in Code Example 6.23 is not very useful, because it
receives no input from the calling function (main) and returns no output.
By MIPS convention, functions use $a0–$a3 for input arguments and
$v0–$v1 for the return value. In Code Example 6.24, the function
diffofsums is called with four arguments and returns one result.

According to MIPS convention, the calling function, main, places the
function arguments from left to right into the input registers, $a0–$a3. The
called function, diffofsums, stores the return value in the return register, $v0.

A function that returns a 64-bit value, such as a double-precision
floating point number, uses both return registers, $v0 and $v1. When a
function with more than four arguments is called, the additional input
arguments are placed on the stack, which we discuss next.

Code Example 6.24 has some
subtle errors. Code Examples
6.25 and 6.26 on pages 328
and 329 show improved
versions of the program.

Code Example 6.24 FUNCTION CALL WITH ARGUMENTS AND RETURN VALUES

High-Level Code

int main()
{

int y;

. . .

y = diffofsums(2, 3, 4, 5);

. . .
}

int diffofsums(int f, int g, int h, int i)
{

int result;

result = (f + g) − (h + i);
return result;

}

MIPS Assembly Code

$s0 = y

main:
. . .
addi $a0, $0, 2 # argument 0 = 2
addi $a1, $0, 3 # argument 1 = 3
addi $a2, $0, 4 # argument 2 = 4
addi $a3, $0, 5 # argument 3 = 5
jal diffofsums # call function
add $s0, $v0, $0 # y = returned value
. . .

$s0 = result
diffofsums:
add $t0, $a0, $a1 # $t0 = f + g
add $t1, $a2, $a3 # $t1 = h + i
sub $s0, $t0, $t1 # result = (f + g) − (h + i)
add $v0, $s0, $0 # put return value in $v0
jr $ra # return to caller

326 CHAPTER SIX Architecture

The Stack
The stack is memory that is used to save local variables within a function.
The stack expands (uses more memory) as the processor needs more scratch
space and contracts (uses less memory) when the processor no longer needs
the variables stored there. Before explaining how functions use the stack to
store temporary variables, we explain how the stack works.

The stack is a last-in-first-out (LIFO) queue. Like a stack of dishes, the
last item pushed onto the stack (the top dish) is the first one that can be
pulled (popped) off. Each function may allocate stack space to store local
variables but must deallocate it before returning. The top of the stack, is
the most recently allocated space. Whereas a stack of dishes grows up in
space, the MIPS stack grows down in memory. The stack expands to lower
memory addresses when a program needs more scratch space.

Figure 6.24 shows a picture of the stack. The stack pointer, $sp, is a spe-
cialMIPS register that points to the top of the stack. A pointer is a fancy name
for a memory address. It points to (gives the address of) data. For example, in
Figure 6.24(a) the stack pointer, $sp, holds the address value 0x7FFFFFFC
and points to the data value 0x12345678. $sp points to the top of the stack,
the lowest accessible memory on the stack. Thus, in Figure 6.24(a), the stack
cannot access memory below memory word 0x7FFFFFFC.

The stack pointer ($sp) starts at a high memory address and decre-
ments to expand as needed. Figure 6.24(b) shows the stack expanding
to allow two more data words of temporary storage. To do so, $sp decre-
ments by 8 to become 0x7FFFFFF4. Two additional data words,
0xAABBCCDD and 0x11223344, are temporarily stored on the stack.

One of the important uses of the stack is to save and restore registers
that are used by a function. Recall that a function should calculate a
return value but have no other unintended side effects. In particular, it
should not modify any registers besides the one containing the return
value $v0. The diffofsums function in Code Example 6.24 violates this
rule because it modifies $t0, $t1, and $s0. If main had been using $t0,
$t1, or $s0 before the call to diffofsums, the contents of these registers
would have been corrupted by the function call.

To solve this problem, a function saves registers on the stack before it
modifies them, then restores them from the stack before it returns. Speci-
fically, it performs the following steps.

1. Makes space on the stack to store the values of one or more registers.

2. Stores the values of the registers on the stack.

3. Executes the function using the registers.

4. Restores the original values of the registers from the stack.

5. Deallocates space on the stack.

Data

7FFFFFFC 12345678

7FFFFFF8

7FFFFFF4

7FFFFFF0

Address

$sp

(a)

7FFFFFFC

7FFFFFF8

7FFFFFF4

7FFFFFF0

Address

(b)

Data

12345678

$sp

AABBCCDD

11223344

Figure 6.24 The stack

6.4 Programming 327

Code Example 6.25 shows an improved version of diffofsums that
saves and restores $t0, $t1, and $s0. The new lines are indicated in blue.
Figure 6.25 shows the stack before, during, and after a call to the diffofsums
function from Code Example 6.25. diffofsumsmakes room for three words
on the stack by decrementing the stack pointer $sp by 12. It then stores the
current values of $s0, $t0, and $t1 in the newly allocated space. It executes
the rest of the function, changing the values in these three registers. At the
end of the function, diffofsums restores the values of $s0, $t0, and $t1 from
the stack, deallocates its stack space, and returns. When the function returns,
$v0 holds the result, but there are no other side effects: $s0, $t0, $t1, and $sp
have the same values as they did before the function call.

The stack space that a function allocates for itself is called its stack
frame. diffofsums’s stack frame is three words deep. The principle of
modularity tells us that each function should access only its own stack
frame, not the frames belonging to other functions.

Data

FC

F8

F4

F0

Address

$sp

(a)

?

Data

$sp

(c)

FC

F8

F4

F0

Address

?

Data

FC

F8

F4

F0

Address

$sp

(b)

$s0

$t0

?

st
ac

k
fra

m
e

$t1

Figure 6.25 The stack (a) before,
(b) during, and (c) after
diffofsums function call

Code Example 6.25 FUNCTION SAVING REGISTERS ON THE STACK

MIPS Assembly Code

$s0 = result

diffofsums:

addi $sp, $sp, −12 # make space on stack to store three registers

sw $s0, 8($sp) # save $s0 on stack

sw $t0, 4($sp) # save $t0 on stack

sw $t1, 0($sp) # save $t1 on stack

add $t0, $a0, $a1 # $t0 = f + g

add $t1, $a2, $a3 # $t1 = h + i

sub $s0, $t0, $t1 # result = (f + g) − (h + i)

add $v0, $s0, $0 # put return value in $v0

lw $t1, 0($sp) # restore $t1 from stack

lw $t0, 4($sp) # restore $t0 from stack

lw $s0, 8($sp) # restore $s0 from stack

addi $sp, $sp, 12 # deallocate stack space

jr $ra # return to caller

328 CHAPTER SIX Architecture

Preserved Registers
Code Example 6.25 assumes that temporary registers $t0 and $t1must be
saved and restored. If the calling function does not use those registers, the
effort to save and restore them is wasted. To avoid this waste, MIPS divides
registers into preserved and nonpreserved categories. The preserved regis-
ters include $s0–$s7 (hence their name, saved). The nonpreserved registers
include $t0–$t9 (hence their name, temporary). A function must save and
restore any of the preserved registers that it wishes to use, but it can change
the nonpreserved registers freely.

Code Example 6.26 shows a further improved version of diffofsums
that saves only $s0 on the stack. $t0 and $t1 are nonpreserved registers,
so they need not be saved.

Remember that when one function calls another, the former is the caller
and the latter is the callee. The callee must save and restore any preserved
registers that it wishes to use. The callee may change any of the nonpreserved
registers. Hence, if the caller is holding active data in a nonpreserved register,
the caller needs to save that nonpreserved register before making the func-
tion call and then needs to restore it afterward. For these reasons, preserved
registers are also called callee-save, and nonpreserved registers are called
caller-save.

Table 6.3 summarizes which registers are preserved. $s0–$s7 are
generally used to hold local variables within a function, so they must be
saved. $ramust also be saved, so that the function knows where to return.
$t0–$t9 are used to hold temporary results before they are assigned to
local variables. These calculations typically complete before a function call
is made, so they are not preserved, and it is rare that the caller needs to save
them. $a0–$a3 are often overwritten in the process of calling a function.

Code Example 6.26 FUNCTION SAVING PRESERVED REGISTERS ON
THE STACK

MIPS Assembly Code

$s0 = result

diffofsums

addi $sp, $sp, −4 # make space on stack to store one register

sw $s0, 0($sp) # save $s0 on stack

add $t0, $a0, $a1 # $t0 = f + g

add $t1, $a2, $a3 # $t1 = h + i

sub $s0, $t0, $t1 # result = (f + g) − (h + i)

add $v0, $s0, $0 # put return value in $v0

lw $s0, 0($sp) # restore $s0 from stack

addi $sp, $sp, 4 # deallocate stack space

jr $ra # return to caller

6.4 Programming 329

Hence, they must be saved by the caller if the caller depends on any of its
own arguments after a called function returns. $v0–$v1 certainly should
not be preserved, because the callee returns its result in these registers.

The stack above the stack pointer is automatically preserved as long
as the callee does not write to memory addresses above $sp. In this
way, it does not modify the stack frame of any other functions. The stack
pointer itself is preserved, because the callee deallocates its stack frame
before returning by adding back the same amount that it subtracted from
$sp at the beginning of the function.

Recursive Function Calls
A function that does not call others is called a leaf function; an example is
diffofsums. A function that does call others is called a nonleaf function.
As mentioned earlier, nonleaf functions are somewhat more complicated
because they may need to save nonpreserved registers on the stack before
they call another function, and then restore those registers afterward.
Specifically, the caller saves any non-preserved registers ($t0–$t9 and
$a0–$a3) that are needed after the call. The callee saves any of the pre-
served registers ($s0–$s7 and $ra) that it intends to modify.

A recursive function is a nonleaf function that calls itself. The
factorial function can be written as a recursive function call. Recall that
factorial(n) = n × (n – 1) × (n – 2) × . . . × 2 × 1. The factorial function
can be rewritten recursively as factorial(n) = n × factorial(n – 1). The
factorial of 1 is simply 1. Code Example 6.27 shows the factorial func-
tion written as a recursive function. To conveniently refer to program
addresses, we assume that the program starts at address 0x90.

The factorial function might modify $a0 and $ra, so it saves them
on the stack. It then checks whether n < 2. If so, it puts the return value of
1 in $v0, restores the stack pointer, and returns to the caller. It does not
have to reload $ra and $a0 in this case, because they were never modi-
fied. If n > 1, the function recursively calls factorial(n ‒ 1). It then
restores the value of n ($a0) and the return address ($ra) from the stack,
performs the multiplication, and returns this result. The multiply

Table 6.3 Preserved and nonpreserved registers

Preserved Nonpreserved

Saved registers: $s0–$s7 Temporary registers: $t0–$t9

Return address: $ra Argument registers: $a0–$a3

Stack pointer: $sp Return value registers: $v0–$v1

Stack above the stack pointer Stack below the stack pointer

330 CHAPTER SIX Architecture

instruction (mul $v0, $a0, $v0) multiplies $a0 and $v0 and places the
result in $v0.

Figure 6.26 shows the stack when executing factorial(3). We assume
that $sp initially points to 0xFC, as shown in Figure 6.26(a). The function
creates a two-word stack frame to hold $a0 and $ra. On the first invocation,
factorial saves $a0 (holding n = 3) at 0xF8 and $ra at 0xF4, as shown in
Figure 6.26(b). The function then changes $a0 to n = 2 and recursively calls
factorial(2), making $ra hold 0xBC. On the second invocation, it saves
$a0 (holding n = 2) at 0xF0 and $ra at 0xEC. This time, we know that $ra
contains 0xBC. The function then changes $a0 to n = 1 and recursively calls
factorial(1). On the third invocation, it saves $a0 (holding n = 1) at 0xE8
and $ra at 0xE4. This time, $ra again contains 0xBC. The third invocation of

$sp

(a)

FC

F8

F4

F0

EC

E8

E4

E0

DC

Data Address

FC

F8

F4

F0

(b)

$ra

EC

E8

E4

E0

DC

$sp

$sp

$sp

$sp

Data Address

$a0 (0x3)

$ra (0xBC)

$a0 (0x2)

$ra (0xBC)

$a0 (0x1)

FC

F8

F4

F0

(c)

EC

E8

E4

E0

DC

$sp

$sp

$sp

$sp

$a0 = 1
$v0 = 1 x 1

$a0 = 2
$v0 = 2 x 1

$a0 = 3
$v0 = 3 x 2

$v0 = 6

Data Address

$ra

$a0 (0x3)

$ra (0xBC)

$a0 (0x2)

$ra (0xBC)

$a0 (0x1)

Figure 6.26 Stack during
factorial function call when
n = 3: (a) before call, (b) after last
recursive call, (c) after return

Code Example 6.27 factorial RECURSIVE FUNCTION CALL

High-Level Code

int factorial(int n) {

if (n <= 1)
return 1;

else
return (n * factorial(n − 1));

}

MIPS Assembly Code

0x90 factorial: addi $sp, $sp, −8 # make room on stack
0x94 sw $a0, 4($sp) # store $a0
0x98 sw $ra, 0($sp) # store $ra
0x9C addi $t0, $0, 2 # $t0= 2
OxAO slt $t0, $a0, $t0 # n <= 1 ?
0xA4 beq $t0, $0, else # no: goto else
0xA8 addi $v0, $0, 1 # yes: return 1
OxAC addi $sp, $sp, 8 # restore $sp
OxBO jr $ra # return
0xB4 else: addi $a0, $a0, −1 # n = n − 1
0xB8 jal factorial # recursive call
OxBC Iw $ra, 0($sp) # restore $ra
OxCO Iw $a0, 4($sp) # restore $a0
0xC4 addi $sp, $sp, 8 # restore $sp
0xC8 mul $v0, $a0, $v0 # n * factorial(n−1)
OxCC jr $ra # return

6.4 Programming 331

factorial returns the value 1 in $v0 and deallocates the stack frame before
returning to the second invocation. The second invocation restores n to 2,
restores $ra to 0xBC (it happened to already have this value), deallocates
the stack frame, and returns $v0 = 2 × 1 = 2 to the first invocation. The first
invocation restores n to 3, restores $ra to the return address of the caller, deal-
locates the stack frame, and returns $v0 = 3 × 2 = 6. Figure 6.26(c) shows the
stack as the recursively called functions return. When factorial returns to
the caller, the stack pointer is in its original position (0xFC), none of the
contents of the stack above the pointer have changed, and all of the preserved
registers hold their original values. $v0 holds the return value, 6.

Additional Arguments and Local Variables*
Functions may have more than four input arguments and local variables.
The stack is used to store these temporary values. By MIPS convention, if
a function has more than four arguments, the first four are passed in the
argument registers as usual. Additional arguments are passed on the
stack, just above $sp. The caller must expand its stack to make room
for the additional arguments. Figure 6.27(a) shows the caller’s stack for
calling a function with more than four arguments.

A function can also declare local variables or arrays. Local variables
are declared within a function and can be accessed only within that func-
tion. Local variables are stored in $s0–$s7; if there are too many local
variables, they can also be stored in the function’s stack frame. In particu-
lar, local arrays are stored on the stack.

Figure 6.27(b) shows the organization of a callee’s stack frame. The
stack frame holds the function’s own arguments, the return address, and
any of the saved registers that the function will modify. It also holds local
arrays and any excess local variables. If the callee has more than four

$sp

$ra (if needed)

additional arguments

$a0–$a3
(if needed)

$s0–$s7
(if needed)

local variables or
arrays

(a) (b)

$sp

st
ac

k
fr

am
e

additional arguments

Figure 6.27 Stack usage:
(a) before call, (b) after call

332 CHAPTER SIX Architecture

arguments, it finds them in the caller’s stack frame. Accessing additional
input arguments is the one exception in which a function can access stack
data not in its own stack frame.

6.5 ADDRESSING MODES
MIPS uses five addressingmodes: register-only, immediate, base, PC-relative,
and pseudo-direct. The first three modes (register-only, immediate, and base
addressing) define modes of reading and writing operands. The last two
(PC-relative and pseudo-direct addressing) define modes of writing the pro-
gram counter, PC.

Register-Only Addressing
Register-only addressing uses registers for all source and destination oper-
ands. All R-type instructions use register-only addressing.

Immediate Addressing
Immediate addressing uses the 16-bit immediate along with registers as
operands. Some I-type instructions, such as add immediate (addi) and
load upper immediate (lui), use immediate addressing.

Base Addressing
Memory access instructions, such as load word (lw) and store word (sw),
use base addressing. The effective address of the memory operand is
found by adding the base address in register rs to the sign-extended
16-bit offset found in the immediate field.

PC-Relative Addressing
Conditional branch instructions use PC-relative addressing to specify the
new value of the PC if the branch is taken. The signed offset in the
immediate field is added to the PC to obtain the new PC; hence, the branch
destination address is said to be relative to the current PC.

Code Example 6.28 shows part of the factorial function from
Code Example 6.27. Figure 6.28 shows the machine code for the beq
instruction. The branch target address (BTA) is the address of the next
instruction to execute if the branch is taken. The beq instruction in
Figure 6.28 has a BTA of 0xB4, the instruction address of the else
label.

The 16-bit immediate field gives the number of instructions between
the BTA and the instruction after the branch instruction (the instruction
at PC+ 4). In this case, the value in the immediate field of beq is 3 because
the BTA (0xB4) is 3 instructions past PC+ 4 (0xA8).

The processor calculates the BTA from the instruction by sign-extend-
ing the 16-bit immediate, multiplying it by 4 (to convert words to bytes),
and adding it to PC+ 4.

6.5 Addressing Modes 333

Example 6.8 CALCULATING THE IMMEDIATE FIELD FOR
PC-RELATIVE ADDRESSING

Calculate the immediate field and show the machine code for the branch not equal
(bne) instruction in the following program.

MIPS assembly code
0x40 loop: add $t1, $a0, $s0
0x44 lb $t1, 0($t1)
0x48 add $t2, $a1, $s0
0x4C sb $t1, 0($t2)
0x50 addi $s0, $s0, 1
0x54 bne $t1, $0, loop
0x58 lw $s0, 0($sp)

Solution:
Figure 6.29 shows the machine code for the bne instruction. Its branch target address,
0x40, is 6 instructions behind PC+ 4 (0x58), so the immediate field is –6.

Pseudo-Direct Addressing
In direct addressing, an address is specified in the instruction. The jump
instructions, j and jal, ideally would use direct addressing to specify a

Code Example 6.28 CALCULATING THE BRANCH TARGET ADDRESS

MIPS Assembly Code

0xA4 beq $t0, $0, else

0xA8 addi $v0, $0, 1

0xAC addi $sp, $sp, 8

0xBO jr $ra

0xB4 else: addi $a0, $a0, −1
0xB8 jal factorial

op rs imm

beq $t0, $0, else

Machine CodeAssembly Code

6 bits 5 bits 5 bits 16 bits

(0x11000003)

6 bits

Field Values
op rs rt imm

4 8 0 3

5 bits 5 bits 16 bits

000100 01000 00000 0000000000000011

rt

Figure 6.28 Machine code for beq

000101 01001 00000bne $t1, $0, loop

Machine CodeAssembly Code

5 9 0 -6

6 bits 5 bits 5 bits 16 bits

(0x1520FFFA)

6 bits 5 bits 5 bits 16 bits

op rs rt imm op rs rt imm

1111 1111 1111 1010

Field Values

Figure 6.29 bne machine code

334 CHAPTER SIX Architecture

32-bit jump target address (JTA) to indicate the instruction address to
execute next.

Unfortunately, the J-type instruction encoding does not have enough
bits to specify a full 32-bit JTA. Six bits of the instruction are used for the
opcode, so only 26 bits are left to encode the JTA. Fortunately, the two
least significant bits, JTA1:0, should always be 0, because instructions
are word aligned. The next 26 bits, JTA27:2, are taken from the addr field
of the instruction. The four most significant bits, JTA31:28, are obtained
from the four most significant bits of PC+ 4. This addressing mode is
called pseudo-direct.

Code Example 6.29 illustrates a jal instruction using pseudo-direct
addressing. The JTA of the jal instruction is 0x004000A0. Figure 6.30
shows the machine code for this jal instruction. The top four bits and
bottom two bits of the JTA are discarded. The remaining bits are stored
in the 26-bit address field (addr).

The processor calculates the JTA from the J-type instruction by
appending two 0’s and prepending the four most significant bits of PC+ 4
to the 26-bit address field (addr).

Because the four most significant bits of the JTA are taken from PC+ 4,
the jump range is limited. The range limits of branch and jump instructions
are explored in Exercises 6.29 to 6.32. All J-type instructions, j and jal,
use pseudo-direct addressing.

Note that the jump register instruction, jr, is not a J-type instruction.
It is an R-type instruction that jumps to the 32-bit value held in register rs.

Code Example 6.29 CALCULATING THE JUMP TARGET ADDRESS

MIPS Assembly Code

0x0040005C jal sum
. . .

0x004000A0 sum: add $v0, $a0, $a1

op

jal sum

Machine CodeAssembly Code

3 (0x0C100028)

op

6 bits

0000 0000 0100 0000 0000 0000 1010 0000JTA

26-bit addr (0x0100028)

(0x004000A0)

0000 0000

0 0 0 2 8

addr

0x0100028

26 bits 6 bits 26 bits

000011 00 0001 0000 0000 0000 0010 1000

addr

0000 0100 0000 0000 0000 1010

1 0

Field Values

Figure 6.30 jal machine code

6.5 Addressing Modes 335

6.6 LIGHTS, CAMERA, ACTION: COMPILING,
ASSEMBLING, AND LOADING

Up until now, we have shown how to translate short high-level code snip-
pets into assembly and machine code. This section describes how to com-
pile and assemble a complete high-level program and how to load the
program into memory for execution.

We begin by introducing the MIPS memory map, which defines
where code, data, and stack memory are located. We then show the steps
of code execution for a sample program.

6 . 6 . 1 The Memory Map

With 32-bit addresses, the MIPS address space spans 232 bytes = 4 giga-
bytes (GB). Word addresses are divisible by 4 and range from 0 to
0xFFFFFFFC. Figure 6.31 shows the MIPS memory map. The MIPS
architecture divides the address space into four parts or segments: the text
segment, global data segment, dynamic data segment, and reserved seg-
ments. The following sections describe each segment.

The Text Segment
The text segment stores the machine language program. It is large enough
to accommodate almost 256 MB of code. Note that the four most signif-
icant bits of the address in the text space are all 0, so the j instruction can
directly jump to any address in the program.

The Global Data Segment
The global data segment stores global variables that, in contrast to local
variables, can be seen by all functions in a program. Global variables

SegmentAddress

$sp = 0x7FFFFFFC

0xFFFFFFFC

0x80000000
0x7FFFFFFC

0x10010000
0x1000FFFC
0x10000000
0x0FFFFFFC

0x00400000
0x003FFFFC

0x00000000

Reserved

Stack

Heap

Global Data

Text

Reserved

$gp = 0x10008000

PC = 0x00400000

Dynamic DataFigure 6.31 MIPS memory map

336 CHAPTER SIX Architecture

are defined at start-up, before the program begins executing. These vari-
ables are declared outside the main function in a C program and can be
accessed by any function. The global data segment is large enough to
store 64 KB of global variables.

Global variables are accessed using the global pointer ($gp), which is
initialized to 0x100080000. Unlike the stack pointer ($sp), $gp does not
change during program execution. Any global variable can be accessed
with a 16-bit positive or negative offset from $gp. The offset is known
at assembly time, so the variables can be efficiently accessed using base
addressing mode with constant offsets.

The Dynamic Data Segment
The dynamic data segment holds the stack and the heap. The data in this
segment are not known at start-up but are dynamically allocated and
deallocated throughout the execution of the program. This is the largest
segment of memory used by a program, spanning almost 2 GB of the
address space.

As discussed in Section 6.4.6, the stack is used to save and restore
registers used by functions and to hold local variables such as arrays.
The stack grows downward from the top of the dynamic data segment
(0x7FFFFFFC) and each stack frame is accessed in last-in-first-out order.

The heap stores data that is allocated by the program during runtime.
In C, memory allocations are made by the malloc function; in C++ and
Java, new is used to allocate memory. Like a heap of clothes on a dorm
room floor, heap data can be used and discarded in any order. The heap
grows upward from the bottom of the dynamic data segment.

If the stack and heap ever grow into each other, the program’s data
can become corrupted. The memory allocator tries to ensure that this
never happens by returning an out-of-memory error if there is insufficient
space to allocate more dynamic data.

The Reserved Segments
The reserved segments are used by the operating system and cannot directly
be used by the program. Part of the reserved memory is used for interrupts
(see Section 7.7) and for memory-mapped I/O (see Section 8.5).

6 . 6 . 2 Translating and Starting a Program

Figure 6.32 shows the steps required to translate a program from a high-
level language into machine language and to start executing that program.
First, the high-level code is compiled into assembly code. The assembly
code is assembled into machine code in an object file. The linker combines
the machine code with object code from libraries and other files to pro-
duce an entire executable program. In practice, most compilers perform
all three steps of compiling, assembling, and linking. Finally, the loader

Grace Hopper, 1906–1992.
Graduated from Yale University
with a Ph.D. in mathematics.
Developed the first compiler
while working for the Remington
Rand Corporation and was
instrumental in developing the
COBOL programming language.
As a naval officer, she received
many awards, including a World
War II Victory Medal and the
National Defense Service Medal.

6.6 Lights, Camera, Action: Compiling, Assembling, and Loading 337

loads the program into memory and starts execution. The remainder of
this section walks through these steps for a simple program.

Step 1: Compilation
A compiler translates high-level code into assembly language. Code Exam-
ple 6.30 shows a simple high-level program with three global variables and

Assembly Code

High-Level Code

Compiler

Object File

Assembler

Executable

Linker

Memory

Loader

Object Files
Library Files

Figure 6.32 Steps for translating
and starting a program

Code Example 6.30 COMPILING A HIGH-LEVEL PROGRAM

High-Level Code

int f, g, y; // global variables

int main(void)
{

f = 2;
g = 3;
y = sum(f, g);
return y;

}

int sum(int a, int b) {
return (a + b);

}

MIPS Assembly Code

.data
f:
g:
y:

.text
main:
addi $sp, $sp, −4 # make stack frame
sw $ra, 0($sp) # store $ra on stack
addi $a0, $0, 2 # $a0 = 2
sw $a0, f # f = 2
addi $a1, $0, 3 # $a1 = 3
sw $a1, g # g = 3
jal sum # call sum function
sw $v0, y # y = sum(f, g)
Iw $ra, 0($sp) # restore $ra from stack
addi $sp, $sp, 4 # restore stack pointer
jr $ra # return to operating system

sum:
add $v0, $a0, $a1 # $v0 = a + b
jr $ra # return to caller

338 CHAPTER SIX Architecture

two functions, along with the assembly code produced by a typical compi-
ler. The .data and .text keywords are assembler directives that indicate
where the text and data segments begin. Labels are used for global vari-
ables f, g, and y. Their storage location will be determined by the assem-
bler; for now, they are left as symbols in the code.

Step 2: Assembling
The assembler turns the assembly language code into an object file con-
taining machine language code. The assembler makes two passes through
the assembly code. On the first pass, the assembler assigns instruction
addresses and finds all the symbols, such as labels and global variable
names. The code after the first assembler pass is shown here.

0x00400000 main: addi $sp, $sp, −4
0x00400004 sw $ra, 0($sp)
0x00400008 addi $a0, $0, 2
0x0040000C sw $a0, f
0x00400010 addi $a1, $0, 3
0x00400014 sw $a1, g
0x00400018 jal sum
0x0040001C sw $v0, y
0x00400020 lw $ra, 0($sp)
0x00400024 addi $sp, $sp, 4
0x00400028 jr $ra
0x0040002C sum: add $v0, $a0, $a1
0x00400030 jr $ra

The names and addresses of the symbols are kept in a symbol table, as
shown in Table 6.4 for this code. The symbol addresses are filled in after
the first pass, when the addresses of labels are known. Global variables are
assigned storage locations in the global data segment of memory, starting
at memory address 0x10000000.

On the second pass through the code, the assembler produces the
machine language code. Addresses for the global variables and labels
are taken from the symbol table. The machine language code and symbol
table are stored in the object file.

Table 6.4 Symbol table

Symbol Address

f 0x10000000

g 0x10000004

y 0x10000008

main 0x00400000

sum 0x0040002C

6.6 Lights, Camera, Action: Compiling, Assembling, and Loading 339

Step 3: Linking
Most large programs contain more than one file. If the programmer
changes only one of the files, it would be wasteful to recompile and reas-
semble the other files. In particular, programs often call functions in
library files; these library files almost never change. If a file of high-level
code is not changed, the associated object file need not be updated.

The job of the linker is to combine all of the object files into one
machine language file called the executable. The linker relocates the data
and instructions in the object files so that they are not all on top of each
other. It uses the information in the symbol tables to adjust the addresses
of global variables and of labels that are relocated.

In our example, there is only one object file, so no relocation is
necessary. Figure 6.33 shows the executable file. It has three sections:
the executable file header, the text segment, and the data segment.
The executable file header reports the text size (code size) and data size
(amount of globally declared data). Both are given in units of bytes. The
text segment gives the instructions in the order that they are stored in
memory.

The figure shows the instructions in human-readable format next to
the machine code for ease of interpretation, but the executable file
includes only machine instructions. The data segment gives the address
of each global variable. The global variables are addressed with respect
to the base address given by the global pointer, $gp. For example, the first

Executable file header Text Size Data Size

Text segment

Data segment

Address

Address

0x00400000

0x00400004

0x00400008

0x0040000C

0x00400010

0x00400014

0x00400018

0x0040001C

0x00400020

0x00400024

0x00400028

0x0040002C

0x00400030

addi $sp, $sp, –4

sw $ra, 0($sp)

addi $a0, $0, 2

sw $a0, 0x8000($gp)

addi $a1, $0, 3

sw $a1, 0x8004($gp)

jal 0x0040002C

sw $v0, 0x8008($gp)

lw $ra, 0($sp)

addi $sp, $sp, –4

jr $ra

add $v0, $a0, $a1

jr $ra

0x10000000

0x10000004

0x10000008

f

g

y

0xC (12 bytes) 0x34 (52 bytes)

0x23BDFFFC

0xAFBF0000

0x20040002

0xAF848000

0x20050003

0xAF858004

0x0C10000B

0xAF828008

0x8FBF0000

0x23BD0004

0x03E00008

0x00851020

0x03E00008

Instruction

Data

Figure 6.33 Executable

340 CHAPTER SIX Architecture

store instruction, sw $a0, 0x8000($gp), stores the value 2 to the global
variable f, which is located at memory address 0x10000000. Remember
that the offset, 0x8000, is a 16-bit signed number that is sign-extended
and added to the base address, $gp. So, $gp + 0x8000 = 0x10008000 +
0xFFFF8000 = 0x10000000, the memory address of variable f.

Step 4: Loading
The operating system loads a program by reading the text segment of the
executable file from a storage device (usually the hard disk) into the text
segment of memory. The operating system sets $gp to 0x10008000 (the
middle of the global data segment) and $sp to 0x7FFFFFFC (the top of
the dynamic data segment), then performs a jal 0x00400000 to jump
to the beginning of the program. Figure 6.34 shows the memory map at
the beginning of program execution.

y

g

f

0x03E00008

0x00851020

0x03E00008

0x23BD0004

0x8FBF0000

0xAF828008

0x0C10000B

0xAF858004

0x20050003

0xAF848000

0x20040002

0xAFBF0000

0x23BDFFFC

MemoryAddress

$sp = 0x7FFFFFFC0x7FFFFFFC

0x10010000

0x00400000

Stack

Heap

$gp = 0x10008000

PC = 0x00400000

0x10000000

Reserved

Reserved

Figure 6.34 Executable loaded
in memory

6.6 Lights, Camera, Action: Compiling, Assembling, and Loading 341

6.7 ODDS AND ENDS*
This section covers a few optional topics that do not fit naturally
elsewhere in the chapter. These topics include pseudoinstructions, excep-
tions, signed and unsigned arithmetic instructions, and floating-point
instructions.

6 . 7 . 1 Pseudoinstructions

If an instruction is not available in the MIPS instruction set, it is probably
because the same operation can be performed using one or more existing
MIPS instructions. Remember that MIPS is a reduced instruction set com-
puter (RISC), so the instruction size and hardware complexity are mini-
mized by keeping the number of instructions small.

However, MIPS defines pseudoinstructions that are not actually part
of the instruction set but are commonly used by programmers and compi-
lers. When converted to machine code, pseudoinstructions are translated
into one or more MIPS instructions.

Table 6.5 gives examples of pseudoinstructions and the MIPS instruc-
tions used to implement them. For example, the load immediate pseudoin-
struction (li) loads a 32-bit constant using a combination of lui and
ori instructions. The no operation pseudoinstruction (nop, pronounced
“no op”) performs no operation. The PC is incremented by 4 upon its execu-
tion. No other registers or memory values are altered. The machine code for
the nop instruction is 0x00000000.

Some pseudoinstructions require a temporary register for intermediate
calculations. For example, the pseudoinstruction beq $t2, imm15:0, Loop
compares $t2 to a 16-bit immediate, imm15:0. This pseudoinstruction
requires a temporary register in which to store the 16-bit immediate. Assem-
blers use the assembler register, $at, for such purposes. Table 6.6 shows

Table 6.5 Pseudoinstructions

Pseudoinstruction
Corresponding

MIPS Instructions

li $s0, 0x1234AA77 lui $s0, 0x1234
ori $s0, 0xAA77

clear $t0 add $t0, $0, $0

move $s2, $s1 add $s2, $s1, $0

nop sll $0, $0, 0

342 CHAPTER SIX Architecture

how the assembler uses $at in converting a pseudoinstruction to real MIPS
instructions.We leave it as Exercises 6.38 and6.39 to implement other pseudo-
instructions such as rotate left (rol) and rotate right (ror).

6 . 7 . 2 Exceptions

An exception is like an unscheduled function call that jumps to a new
address. Exceptions may be caused by hardware or software. For exam-
ple, the processor may receive notification that the user pressed a key on
a keyboard. The processor may stop what it is doing, determine which
key was pressed, save it for future reference, then resume the program
that was running. Such a hardware exception triggered by an input/
output (I/O) device such as a keyboard is often called an interrupt.
Alternatively, the program may encounter an error condition such as
an undefined instruction. The program then jumps to code in the oper-
ating system (OS), which may choose to terminate the offending pro-
gram. Software exceptions are sometimes called traps. Other causes of
exceptions include division by zero, attempts to read nonexistent mem-
ory, hardware malfunctions, debugger breakpoints, and arithmetic over-
flow (see Section 6.7.3).

The processor records the cause of an exception and the value of the PC
at the time the exception occurs. It then jumps to the exception handler func-
tion. The exception handler is code (usually in the OS) that examines the
cause of the exception and responds appropriately (by reading the keyboard
on a hardware interrupt, for example). It then returns to the program that
was executing before the exception took place. InMIPS, the exception hand-
ler is always located at 0x80000180. When an exception occurs, the proces-
sor always jumps to this instruction address, regardless of the cause.

TheMIPS architecture uses a special-purpose register, called the Cause
register, to record the cause of the exception. Different codes are used to
record different exception causes, as given in Table 6.7. The exception
handler code reads the Cause register to determine how to handle the
exception. Some other architectures jump to a different exception handler
for each different cause instead of using a Cause register.

MIPS uses another special-purpose register called the Exception
Program Counter (EPC) to store the value of the PC at the time an

Table 6.6 Pseudoinstruction using $at

Pseudoinstruction
Corresponding

MIPS Instructions

beq $t2, imm15:0, Loop addi $at, $0, imm15:0
beq $t2, $at, Loop

6.7 Odds and Ends 343

exception takes place. The processor returns to the address in EPC after
handling the exception. This is analogous to using $ra to store the old
value of the PC during a jal instruction.

The EPC and Cause registers are not part of the MIPS register file.
The mfc0 (move from coprocessor 0) instruction copies these and other
special-purpose registers into one of the general purpose registers. Copro-
cessor 0 is called the MIPS processor control; it handles interrupts and
processor diagnostics. For example, mfc0 $t0, Cause copies the Cause
register into $t0.

The syscall and break instructions cause traps to perform system
calls or debugger breakpoints. The exception handler uses the EPC to look
up the instruction and determine the nature of the system call or break-
point by looking at the fields of the instruction.

In summary, an exception causes the processor to jump to the excep-
tion handler. The exception handler saves registers on the stack, then uses
mfc0 to look at the cause and respond accordingly. When the handler is
finished, it restores the registers from the stack, copies the return address
from EPC to $k0 using mfc0, and returns using jr $k0.

6 . 7 . 3 Signed and Unsigned Instructions

Recall that a binary number may be signed or unsigned. The MIPS archi-
tecture uses two’s complement representation of signed numbers. MIPS
has certain instructions that come in signed and unsigned flavors, includ-
ing addition and subtraction, multiplication and division, set less than,
and partial word loads.

Addition and Subtraction
Addition and subtraction are performed identically whether the number is
signed or unsigned. However, the interpretation of the results is different.

As mentioned in Section 1.4.6, if two large signed numbers are added
together, the result may incorrectly produce the opposite sign. For

Table 6.7 Exception cause codes

Exception Cause

hardware interrupt 0x00000000

system call 0x00000020

breakpoint/divide by 0 0x00000024

undefined instruction 0x00000028

arithmetic overflow 0x00000030

$k0 and $kl are included in
the MIPS register set. They
are reserved by the OS for
exception handling. They do
not need to be saved and
restored during exceptions.

344 CHAPTER SIX Architecture

example, adding the following two huge positive numbers gives a negative
result: 0x7FFFFFFF+ 0x7FFFFFFF = 0xFFFFFFFE = −2. Similarly, add-
ing two huge negative numbers gives a positive result, 0x80000001+
0x80000001 = 0x00000002. This is called arithmetic overflow.

The C language ignores arithmetic overflows, but other languages,
such as Fortran, require that the program be notified. As mentioned in
Section 6.7.2, the MIPS processor takes an exception on arithmetic over-
flow. The program can decide what to do about the overflow (for exam-
ple, it might repeat the calculation with greater precision to avoid the
overflow), then return to where it left off.

MIPS provides signed and unsigned versions of addition and subtrac-
tion. The signed versions are add, addi, and sub. The unsigned versions
are addu, addiu, and subu. The two versions are identical except that
signed versions trigger an exception on overflow, whereas unsigned ver-
sions do not. Because C ignores exceptions, C programs technically use
the unsigned versions of these instructions.

Multiplication and Division
Multiplication and division behave differently for signed and unsigned num-
bers. For example, as an unsigned number, 0xFFFFFFFF represents a large
number, but as a signed number it represents –1. Hence, 0xFFFFFFFF ×
0xFFFFFFFF would equal 0xFFFFFFFE00000001 if the numbers were
unsigned but 0x0000000000000001 if the numbers were signed.

Therefore, multiplication and division come in both signed and
unsigned flavors. mult and div treat the operands as signed numbers.
multu and divu treat the operands as unsigned numbers.

Set Less Than
Set less than instructions can compare either two registers (slt) or a
register and an immediate (slti). Set less than also comes in signed
(slt and slti) and unsigned (sltu and sltiu) versions. In a signed com-
parison, 0x80000000 is less than any other number, because it is the most
negative two’s complement number. In an unsigned comparison,
0x80000000 is greater than 0x7FFFFFFF but less than 0x80000001,
because all numbers are positive.

Beware that sltiu sign-extends the immediate before treating it as an
unsigned number. For example, sltiu $s0, $s1, 0x8042 compares $s1 to
0xFFFF8042, treating the immediate as a large positive number.

Loads
As described in Section 6.4.5, byte loads come in signed (lb) and unsigned
(lbu) versions. lb sign-extends the byte, and lbu zero-extends the byte to
fill the entire 32-bit register. Similarly, MIPS provides signed and
unsigned half-word loads (lh and lhu), which load two bytes into the
lower half and sign- or zero-extend the upper half of the word.

6.7 Odds and Ends 345

6 . 7 . 4 Floating-Point Instructions

The MIPS architecture defines an optional floating-point coprocessor,
known as coprocessor 1. In early MIPS implementations, the floating-
point coprocessor was a separate chip that users could purchase if they
needed fast floating-point math. In most recent MIPS implementations,
the floating-point coprocessor is built in alongside the main processor.

MIPS defines thirty-two 32-bit floating-point registers, $f0–$f31. These
are separate from the ordinary registers used so far. MIPS supports both
single- and double-precision IEEE floating-point arithmetic. Double-precision
(64-bit) numbers are stored in pairs of 32-bit registers, so only the 16 even-
numbered registers ($f0, $f2, $f4, . . . , $f30) are used to specify double-
precision operations. By convention, certain registers are reserved for certain
purposes, as given in Table 6.8.

Floating-point instructions all have an opcode of 17 (100012). They
require both a funct field and a cop (coprocessor) field to indicate the type
of instruction. Hence, MIPS defines the F-type instruction format for
floating-point instructions, shown in Figure 6.35. Floating-point instructions
come in both single- and double-precision flavors. cop= 16 (100002) for sin-
gle-precision instructions or 17 (100012) for double-precision instructions.
Like R-type instructions, F-type instructions have two source operands, fs
and ft, and one destination, fd.

Instruction precision is indicated by .s and .d in the mnemonic.
Floating-point arithmetic instructions include addition (add.s, add.d),
subtraction (sub.s, sub.d), multiplication (mul.s, mul.d), and division
(div.s, div.d) as well as negation (neg.s, neg.d) and absolute value
(abs.s, abs.d).

cop ft fs fd funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

F-type

op
Figure 6.35 F-type machine
instruction format

Table 6.8 MIPS floating-point register set

Name Number Use

$fv0–$fv1 0, 2 function return value

$ft0–$ft3 4, 6, 8, 10 temporary variables

$fa0–$fa1 12, 14 function arguments

$ft4–$ft5 16, 18 temporary variables

$fs0–$fs5 20, 22, 24, 26, 28, 30 saved variables

346 CHAPTER SIX Architecture

Floating-point branches have two parts. First, a compare instruction
is used to set or clear the floating-point condition flag (fpcond). Then,
a conditional branch checks the value of the flag. The compare instruc-
tions include equality (c.seq.s/c.seq.d), less than (c.lt.s/c.lt.d),
and less than or equal to (c.le.s/c.le.d). The conditional branch
instructions are bc1f and bc1t that branch if fpcond is FALSE or TRUE,
respectively. Inequality, greater than or equal to, and greater than com-
parisons are performed with seq, lt, and le, followed by bc1f.

Floating-point registers are loaded and stored from memory using
lwc1 and swc1. These instructions move 32 bits, so two are necessary
to handle a double-precision number.

6.8 REAL-WORLD PERSPECTIVE: x86 ARCHITECTURE*
Almost all personal computers today use x86 architecture microproces-
sors. x86, also called IA-32, is a 32-bit architecture originally developed
by Intel. AMD also sells x86 compatible microprocessors.

The x86 architecture has a long and convoluted history dating back
to 1978, when Intel announced the 16-bit 8086 microprocessor. IBM
selected the 8086 and its cousin, the 8088, for IBM’s first personal com-
puters. In 1985, Intel introduced the 32-bit 80386 microprocessor, which
was backward compatible with the 8086, so it could run software devel-
oped for earlier PCs. Processor architectures compatible with the 80386
are called x86 processors. The Pentium, Core, and Athlon processors
are well known x86 processors. Section 7.9 describes the evolution of
x86 microprocessors in more detail.

Various groups at Intel and AMD over many years have shoehorned
more instructions and capabilities into the antiquated architecture. The
result is far less elegant than MIPS. As Patterson and Hennessy explain,
“this checkered ancestry has led to an architecture that is difficult to
explain and impossible to love.” However, software compatibility is far
more important than technical elegance, so x86 has been the de facto
PC standard for more than two decades. More than 100 million x86
processors are sold every year. This huge market justifies more than
$5 billion of research and development annually to continue improving
the processors.

x86 is an example of a Complex Instruction Set Computer (CISC)
architecture. In contrast to RISC architectures such as MIPS, each CISC
instruction can do more work. Programs for CISC architectures usually
require fewer instructions. The instruction encodings were selected to be
more compact, so as to save memory, when RAM was far more expensive
than it is today; instructions are of variable length and are often less than
32 bits. The trade-off is that complicated instructions are more difficult to
decode and tend to execute more slowly.

6.8 Real-World Perspective: x86 Architecture 347

